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1 Before the workshop

We will assume basic theorems of rings, modules and some linear algebra. This includes

1. Polynomial ring. If K is a field then K[X] is a Euclidean domain (and so a principal ideal
domain). Let f(X) ∈ K[X] be an irreducible polynomial, then the ideal 〈f(X)〉 is maximal.

2. Division Algorithm of polynomials. Let K be a field, and f(X) ∈ K[X] be a polynomial of
degree n. Then for any polynomial g(X) ∈ K[X], there exist q(X), r(X) ∈ K[X] such that

g(X) = f(X)q(X) + r(X)

where either r(X) = 0 or deg r(X) < deg f(X).

3. Gauss’s lemma: For each primitive polynomial f(X) ∈ Z[X] ⊂ Q[X], f(X) is irreducible in
Z[X] if and only if f(X) is irreducible in Q[X].
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4. Eisenstein criterion: Let

f(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0, ai ∈ Z

be a primitive polynomial with integer coefficients. If there exists a prime number p such that

(i) p does not divide an,

(ii) p divides ai for each i 6= n,

(iii) p2 does not divide a0,

then f(X) is irreducible.

5. Any non-trivial field homomorphism is injective.

6. Application of rank-nullity theorem

(i) If K be a finite integral domain, then K is a field.

(ii) Let L1, L2 be vector spaces over K such that dimK(L1) = dimK(L2). If σ : L1 → L2 is an
injective K-linear map, then σ is an isomorphism.
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2 Things we are going to cover (summary)

We will cover the following topics with examples in this workshop. Field extensions, Tower law,
Algebraic extensions, Separability and primitive element theorem, Automorphism of fields, Galois
extension, Fundamental theorem of Galois, Finite fields, Cyclotomic Extensions and Kummer Theory.

3 Field extensions

Definition 3.1 (Simple Extension). Let K be a field and so K[X] is a principal ideal domain.
Let f(X) ∈ K[X] be an irreducible polynomial so 〈f(X)〉 is a maximal ideal. Let α be a root of f(X)
and n be the degree of f . Then

L = K(α) := {a0 + a1α + · · ·+ an−1α
n−1 : ai ∈ K}

is a field extension of K. Note that L is a K-vector space with basis {1, α, . . . , αn−1}.
We have an isomorphism

K[X]/〈f(X)〉 ∼= K(α), g(X) + 〈f(X)〉 7→ g(α).

We will mainly focus on the case K = Q.

Example 3.2. The ring Q[X] is a principal ideal domain and X2 + 1 is an irreducible polynomial.
So 〈X2 + 1〉 is a maximal ideal and Q[X]/〈X2 + 1〉 is a field. We have an isomorphism

Q[X]/〈X2 + 1〉 ∼= Q(i) := {a+ bi : a, b ∈ Q}, a+ bX 7→ a+ bi.

For example, by division algorithm

X2 + 2X + 1 = (X2 + 1) + 2X

and so 2X is a representative of X2 + 2X + 1 for Q[X]/〈X2 + 1〉. So

X2 + 2X + 1 = (X2 + 1) + 2X 7→ 2i.

Remark 3.3. We should NOT distinguish between i and −i. They should only be considered as roots
of X2 + 1 and the i in the above example is just a fixed choice of a root of X2 + 1.

More generally,

Definition 3.4. Let L be a field. If a subring K of L is a field, we call K a subfield of L and L is
a field extension of K. We refer to the pair as an extension L/K (L over K).

4 Tower law

Definition 4.1. Let L = K(α) be a simple extension of K such that there exists a monic irreducible
polynomial f(X) ∈ K[X] with f(α) = 0 (f(X) is called the minimal polynomial of α). Then the
degree of the extension L/K, written [L : K], is defined as the degree of f(X). Equivalently, [L : K]
is the dimension of L as K-vector space.

Example 4.2. Find the minimal polynomial of
√

2 +
√

3 over Q and the degree [Q(
√

2 +
√

3) : Q].

More generally,

Definition 4.3. Let L/K be a field extension. We say L/K is a finite extension if L is a finite
K-vector space; otherwise L/K is infinite. In the case when L/K is finite, the degree of L/K,
written [L : K], is the dimension of L as K-vector space.

Lemma 4.4 (Tower Law). Let F/L/K be field extensions. Then

[F : K] = [F : L][L : K].

Exercise 4.5. Let K(α)/K be a finite extension of odd degree. Then K(α) = K(α2).
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5 Algebraic extensions

Definition 5.1. Let K be a field. We say α is algebraic over K if there exists a polynomial f(X) ∈
K[X] such that f(α) = 0.

We say L/K is an algebraic extension if α is algebraic over K for all α ∈ L.

Example 5.2. 3
√

2 is algebraic over Q because it is a root of X3 − 2.

Lemma 5.3. α, β are algebraic over K if and only if α + β, αβ are both algebraic over K.

This shows that the set of algebraic numbers over Q is a field.

Example 5.4. We have seen that
√

2 +
√

3 is a root of x4 − 10x2 + 1 = 0. In fact we can see that
this is algebraic before we did the computation because

√
2,
√

3 are both algebraic.

Proposition 5.5. If L/K is a finite extension, then it is an algebraic extension.

Remark 5.6. The converse is not true. For example,

Q(
√

2,
√

3,
√

5,
√

7,
√

11, . . .)

is an infinite algebraic extension.

6 Separability and primitive element theorem

Definition 6.1. Let K be a field. We say f(X) ∈ K[X] is separable if f(X) has no repeated root in
any field extension L/K. Let α be algebraic over K. We say α is separable over K if the minimal
polynomial of α is separable. Finally, L/K is a a separable extension if every element of L is separable
over K.

Lemma 6.2. Let K be a field of characteristic zero and L/K a field extension of K. Then L/K is
a separable extension.

Since we mainly focus on the case K = Q, so every finite extension of Q is separable. A finite
extension of Q is called a number field.

Theorem 6.3 (Primitive element theorem). Let L/K be a finite separable extension. Then
L = K(α) for some α.

Remark 6.4. α is not unique. For example, Q(
√

2 +
√

3) = Q(
√

3−
√

2).

Example 6.5. Let L = Q(
√

2,
√

3). Find α such that L = Q(α).

Exercise 6.6. Let p and q be distinct primes. Find α such that

Q(α) = Q(
√
p,
√
q).

7 Automorphisms of fields

Definition 7.1. Let L/K,L′/K be field extensions over K. We say σ : L→ L′ is a K-homomorphism
if σ is a ring homomorphism such that σ(x) = x for all x ∈ K. The set of (non-zero) K-
homomorphisms from L to L′ is denoted by HomK(L,L′). In the case when L′ = L and σ is a
ring isomorphism, we say that σ is a K-automorphism of L. The set of K-automorphism of L is
denoted by AutK(L).
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Remark 7.2. By using rank-nullity and the fact that any K-homomorphism is injective, we conclude
that HomK(L,L) = AutK(L).

Example 7.3. Let
√

2 be a root of X2− 2 = 0 and L = Q(
√

2), considered as a subfield of C. Then

HomQ(L,C) = {σ = id, τ :
√

2 7→ −
√

2}.

Example 7.4. Can you find a non-trivial K-automorphism of L where L = Q( 3
√

2) where 3
√

2 is a
fixed choice of a root of X3 − 2 = 0.

Lemma 7.5. Let L = K(α) be a field extension of K. If σ is a K-automorphism of L, then we must
have σ(α) = β where β is a root of f(X) in L and f(X) is the minimal polynomial of α over K.

Proof. Since σ is a K-automorphism, we have

f(σ(α)) = σ(f(α)) = σ(0) = 0

and so σ(α) must be a root of f(X) in L.

In the case when K = Q, the map σ : α 7→ β extends to a K-homomorphism from L to C. The
above lemma shows that

Lemma 7.6. Let L/K,L′/K be field extensions of K. Let K ⊂ F ⊂ L and α ∈ L be algebraic over
F with minimal polynomial f(X) ∈ F [X].

Then for every τ ∈ HomK(F,L′) we have a bijection:

{ρ ∈ HomK(F (α), L′) : ρ
∣∣
F

= τ} 3 ρ 7→ ρ(α) ∈ Root(τf)(L
′).

Example 7.7. Let K = F = Q(
√

2) and α = 4
√

2. Then L = Q( 4
√

2) and f(X) = X2 −
√

2. Let
L′ = Q(i 4

√
2). Let τ be the natural injection F ↪→ L′. Suppose ρ is a F -homomorphism from L

to L′, then ρ must be an isomorphism (Rank Nullity). Then the above lemma tells us that ρ must
correspond to a root of f(X) = X2 −

√
2 in L′. However, L′ does not contain any root of f(X)

because otherwise L′ ⊃ L and so L′ = L by using tower law [L′ : Q] = [L′ : L][L : Q], which is
impossible because L is real but L′ is not. Therefore we conclude that L is not F -isomorphic to L′.
Nonetheless, L and L′ are Q-isomorphic because they are both isomorphic to Q[X]/〈X4 − 2〉.

Proposition 7.8. Let L/K be a finite extension. Then

HomK(L,L′) ≤ [L : K]

for any extension L′/K. Moreover, if L/K is a separable extension, then equality holds for some
extension L′/K.

Proof. We sketch the proof for the case L/K is a finite separable extension. By primitive element
theorem we can write L = K(α) for some α ∈ L. Let f(X) be the minimal polynomial of α. Take
F = K and τ as the natural injection K ↪→ L′, then we have a bijection between HomK(L,L′) and
the set of roots of f(X) in L′. So the number of HomK(L,L′) is at most the degree of f(X), which
is [L : K]. In particular, equality holds if we take L′ to be the field which contains every root of
f(X).

Example 7.9. Let K = Q and L = Q(
√

2,
√

3). Describe AutK(L).
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8 Galois extensions

We will mainly focus on finite Galois extension.

Definition 8.1. Let L/K be a finite separable extension so by primitive element theorem we write
L = K(α) for some α. Let f(X) be the minimal polynomial of α. We say L/K is Galois if every
root of f(X) lies in L. Equivalently,

|AutK(L)| = [L : K].

Moreover, one can show that L/K is Galois if and only if L = K(α1, . . . , αn) and every root of fi(X)
is contained in L, where fi(X) is the minimal polynomial of αi.

Example 8.2. Let K = Q and L = Q(ζ3,
3
√

2). Then L/K is Galois. Indeed,

ζ3, ζ
2
3 ,

3
√

2, ζ3
3
√

2, ζ23
3
√

2 ∈ L.

Remark 8.3. A tower of Galois extensions is not necessarily Galois. For example, L = Q( 4
√

2), F =
Q(
√

2) and K = Q. Then L/F and F/K are both Galois but L/K is not.

Definition 8.4. Let L/K be a finite Galois extension. The Galois group of L/K, written Gal(L/K),
is the group of K-automorphisms AutK(L).

Example 8.5. Find the Galois group Gal(Q(ζ3,
3
√

2)/Q).

Definition 8.6. Let K be a field. Then splitting field of a polynomial f(X) ∈ K[X] is the smallest
field which contains every root of f(X). In other words, if α1, . . . , αn are roots of f(X), then the
splitting field of f(X) is K(α1, . . . , αn).

Example 8.7. The splitting field of X3 − 2 ∈ Q[X] is Q(ζ3,
3
√

2).

Exercise 8.8. Find the Galois group Gal(Q(α)/Q) where α is a root of X4 − 2X2 + 25 = 0.

9 Fundamental theorem of Galois

Definition 9.1. Let L/K be a finite Galois extension and G = Gal(L/K). Let H be a subgroup of
Gal(L/K). We write LH to be the fixed subfield of H, i.e.

LH = {x ∈ L : σ(x) = x for all σ ∈ H}.

Theorem 9.2 (Fundamental theorem of Galois). Let L/K be a finite Galois extension.

1. We have a one-to-one correspondence between the subgroup of Gal(L/K) and the intermediate
extension F (i.e. K ⊂ F ⊂ L). More explicitly, each subgroup H of Gal(L/K) corresponds to
the fixed field LH .

2. L/LH is Galois with Galois group H and [L : LH ] = |H|.

3. LH/K is Galois if and only if H is a normal subgroup of Gal(L/K).

Example 9.3. Illustrate the Galois correspondence of Q(ζ3,
3
√

2)/Q.

Exercise 9.4. Illustrate the Galois correspondence of Q(i, 4
√

2)/Q.
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10 Finite Fields

Example 10.1. Let p be a prime. Then Z/pZ is a field of p elements. In fact, every field of p
elements is isomorphic to Z/pZ and we write this field as Fp.

Lemma 10.2. If K is a field of q elements, then q = pd for some d ≥ 1 where p a prime and is the
characteristic of K.

Lemma 10.3. 1. There exists a field with q elements, unique up to Fp-isomorphism. We denote
this field by Fq. Explicitly, we can take the set of all roots {x ∈ K : xq = x}, which is a field of
q elements.

2. Let d, d′ ≥ 1 and q = pd, q′ = pd
′
. Then Fq′ contains Fq if and only if q′ is a power of q, i.e.

d|d′. If q′ = qn, then [Fq′ : Fq] = n.

3. The field extension Fqn/Fq is Galois with cyclic Galois group Z/nZ, generated by the Frobenius
automorphism

Frq : Fqn → Fqn , x 7→ xq.

Example 10.4. F2(ζ3) = F22 because ζ3 is a root of X2 +X + 1 = 0 and X2 +X + 1 is irreducible
over F2. So F2(ζ3) is a degree 2 extension of F2, which is F4 (up to isomorphism).

Exercise 10.5. Let K = F2[X] and f(X) = X5 +X4 + 1 ∈ K[X]. Find the splitting field of f(X).

11 Cyclotomic Extension

By cyclotomic extension we mean a field extension of the form Q(ζn)/Q.

Theorem 11.1. Let L = Q(ζn). Then L/Q is Galois with Galois group (Z/nZ)×. Explicitly, we
have an isomorphism

Gal(L/Q)→ (Z/nZ)×, (ζn 7→ ζjn) 7→ j.

Example 11.2. Let L = Q(ζ5). Then L/Q is Galois with Galois group (Z/5Z)×, generated by
ζ5 7→ ζ25 . We have a subgroup of order 2, H = {4, 1} and we shall find the subfield corresponding to
H. Can we find an element not in Q, but fixed by elements in H?

Exercise 11.3. Illustrate Galois correspondence for Q(ζ12)/Q. (Beware: ζ12 + ζ712 = 0)

12 Kummer theory

Theorem 12.1 (Kummer theory). Let µn ⊂ K with (charK,n) = 1. If F/K is cyclic (that is, a
Galois extension with cyclic Galois group) of degree n, then F = K( n

√
a) for some a ∈ K.

Example 12.2. Let K = Q(ζ3) and L = K(α) where α is a root of f(X) = X3 + X + 1. Let α be
a root of f(X). Then α2 − 2 and −α2 − α + 2 are also roots and so L = K(α) is Galois over K.
By Kummer theory we search for an element a ∈ K such that L = K( 3

√
a). Let σ be a generator of

Gal(L/K) such that
σ : α 7→ α2 − 2.

Let
x = α + ζ3σ(α) + ζ23σ

2(α).

Then σ(x) = ζ23x and so σ(x3) = x3. This shows that x3 is fixed by σ and hence fixed by Gal(L/K).
So x3 ∈ K by fundamental theorem of Galois. A direct computation shows that x3 = 27ζ3 and so we
can write L = K( 3

√
ζ3).
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